
/ Ao— *O ’e3 ‘*91 CAItiS1C—$WLLON UN IV P1T?SSIMS.4 1* DCP? OP cONMJflR —etc r~s ~,a
VCR I FICA TION DL CIDA BZ L I TY OP DRE S9URGER ARRAY P *OSRAMS.(U)
JM 77 N $UZI*1 • 0 aFPCRSCN Ffl620—73—C—0071e

UNCLASSIFIED APOSR—tR—77—1t3$ NI.

rn

I _ _ _

I

a-

~i~!iii~AFOSRTR. 7 7 . 11.SS

• I~”D Verification Decidability of

Presburger Array Programs

Norihisa Suzuki & David Jeff erson

June 14, 1977

Appr oved for PUblIC reldistribution unlimited

DEPA RTMENT
of
COMPUTER SCIENCE

~~~~~~~~~~~~~~~~~~~~~rj
ri

w
U

-~~~~~~~~ = Carnegie-Mellon Universit y
-

~~



AIR IORC~ OflW~ Of ICIU?I7I C RgSZARCE (USC )

NOUCI 01 TRø5XITTAT~ TO DDC
Thi. t.~hniC*1 report has been revie’ed and i5

appr•’II for piabitO releaSo 
LAW AIR 190-12 (7b).

D1$t?tb UttOD t a w~Lia1ted.
A. D. BI~OS~
T.CbDiCftl foi~~~ttO~ Off toer



~ t .LL I~~I ~~Y C LA S~ f~ A T I  iN J~ T W I S  PAGE (W~ 0n lJor. ~

~~~~ EPORT DOCUMENTATION PAGE BEFOR E COMPLETING FORM
..—~

2. GOVT ACCESSION NO. 3 R E C I P I E Nt ’ S C A T A L O G NUMBER

J~~~ yo~~~& 7 i-1138
_ _ _ _ _ _ _ _ _ _ _I T I T L E (*~.d S.~bt frlp) ‘ ~~~~~ er R !P,,AT — ~~~~m.nj

R I F I (A i T O N Dl CIDABIL I r~ OF FRI SH I R I R In r i in / /4 -

ARRA Y PROGRAM S ,1 - -
5. PLa$~~RMI~~~~QRG . P

-

ORT ,jIMlI(~eE

7 A u T~~OR(.) _ .. 3 C O N T R A C rO R G R A N T NUMBER(.)
____ - —.---——--—--. — ——- .

N o r i h i s a 4 u z u k i ~ David/leff .rsun) C ~~~~~~~~~~~~~~~~~~~~/ J L k H ‘J ~
--) i

9 PERFORM ING O R G A N I Z A T I O N NAME AND ADDRESS — ~~ c.. f.,.u ø~ e~E4q~ ~ *WNA R E A & W OR K U N I T NUM B ERS
(‘arneg ie—Me l Ion 10j versi t v

g1~~
i
~~~

ce 1
~~~~; 

~

.

.~~~~~~/.\ : ~~~~~~~~ 42:~/
COI~~T RO L L I N G O F F I C E NAME AND ADDRESS ¶ 2 REPORT D A T E

Defense Advanced Research Pro lects Agency ~~~~~~ 14 , 1977
1400 W i l s on Blvd ¶ 3 . NUMP ER OF PAGES

Arlington , VA 22209 19
¶ 4 M O N I T O R I N G AGENCY NAME & AO DRESS(I1 dllf.r.nt from Controliln4 OlfIc.) ¶ 5. SECURITY CLASS. (of thi. r.porl)

A ir Force Office of Scientific Research (NM)
BoI l i ng AFB DC 20332 r—~~~ ~~~~~~~~~~~~~~~~~~~~

—- UNCLAS S~~F 1[D
‘

~~~ Is.. D E C L A 5 S I F IC A T I O N / D O W N G R A D I N G1/ SCHEDULE

IS. OISTRIeuT ,o N STATEMENT (of hi. R.por( —-— ——~~~~ ~~~~~~~~~~~~~~~~

19 ‘ >-‘j

Approved for public release ; distribution unlimited .

¶ 7. DISTR IBUTn) N S T A T E M E N T  (of th. •b.iraci .nt.r.d Sn BloCk 20. II dlff.r.ni from R.pori)

l b. S U P P L E M E N T A R Y  NOTES

I) K EY WORDS (Con iinu. am r•v•ra• .Sd. If n.c...a,~’ id id.niify by block rnm,b.r)

20. A •ST~~A C T  (Continu. on ,.v.r. . .td. If n.c...~~y wd I d . n U f y  by block nu.ub.r)
— 

A program annotated with inductive assertions is said to be ver if ication decidable
f all of the verification conditior~ genera ted from the program ~ nd assertions are formulas
n a decidable theory. ,.We define a theory, which w&_..c.aW Presburger array theory,

~ :ontaining two logical sor ts: integer and array-of-integer. Addition, sub tract ion , and
:omparisors s are permitted for integers. ~We e#ew array contents and assi gn func tions , and,
wi nce the elements of the arrays are integers , array ac cesses may be nested. The f irst~

DO J~~~ ~~ 
1473 EDITION OF I NOV 68 II OUSOLET fIN CLA SSIFIE UN CLASSIFIED

~~~ 3/N 0 1 0 2 - 0 1 4 • 6601 I
$ICU~~ITV CLA Ss IFICATION OF THI) RA GE (I~ ,.n 0.5.

_ _ _

, I 1 7’ , C L A S’~I F (A ~~I I) N UF THIS PA U t ’ N~,on D.5. IflI .,.d)
abst rac t (c o nt i nu e d)

..- _----~~~~~ result is that the validity of unquantifled formu las in Presburger array theory is decidable ,
yet quantified formulas irs genera l are undecidable. ... We also show that , wit h certain
res trictions , we can add a new predicat e Perm(M,N) --~~ieaning array M is a permuta tion of
s rray N -- to the assertion language and stil l hav~ a solva ble dec ision problem for
ver if ica tion conditions generated from unquantified a~sert ions. The si gnificance of this
esult is that almost all known sorting programs , when ~nriotated with induc tive assertions
or proving that the output is a permutation of the iriput ,are verif ication decidabl e.

UNCLASS IF I ED
)tC U~~ITY CLASSIF ICATION OF TIllS PAG E(*h.n 0.5. Ent.r.d)

‘flS ~~‘ ‘ -

F

I I ~~I ’~I Verifica tion Decidability of‘ A ~~~~~~~~~~~~
.

~~~~~~ 
. .

/
qi

Presburger Array Programs

Norihisa Suzuki & David Jefferson

June 14, 1977

Abstract: A program annotated with inductive assertions is said to be verificati on decidable
if all of the verification conditions, generated from the program and assertions are formulas
in a decidable theory. We define a theory, which we call Presburger array theory,
contaIning two logical sorts: integer and array-of-integer . Addition, subtraction , and
comparisons are permi tted for integers. We allow array contents and assign functions, and,
since the elements of the arrays are integers , array accesses may be nested. The first
resul t is that the validity of unquantified formulas in Presburger array theory is decidable,
ye t quantified formulas in general are undecidable. We also show that , with certain
res trictions, we can add a new predica te Perm(M,N) -- meaning array M is a permutation of
array N -- to the assertion language and still have a solvable decision problem for
verif ication conditions generated from unquantified assertions. The significance of this
resul t is that almost all known sorting programs , when annotated with inductive assertions
for proving that the output is a permutation of the input, are verification decidable.

Keywords: data structures , decidability, Presburger array theory, program verification ,
theorem proving.

To be presented at Conference on Theoretical Computer Science at University of Water loo,
August 1977.

The research described here was supported in part by the Defense Advanced Research
Projects Agency (Contracts: F44620-73-C-0074 , monitored by the Air Force Off ice of
Scientific Research, and DAHC-15-72-C-0308). The views expressed are those of the
authors.



Verification Decidability Page 1

1. Introduction

The theory of pr ogram schemata gains power by dealing with classes of programs
instead of individual programs. Once we establish some result about a program schema we
can apply that result t o any program which is an instance of the schema. Unfortunately, for
those of us interested in verif ication , the t heory of program schemata has not provided
many positive results , and is still unsuccessful in providing tools for proving program
correctness.

One reason for this might be that schemata do not divide the class of all programs into
the kind of subclasses useful for verificat ion. A correctness proof for one instance of a
schema is of almost no use when trying to find a proof of correctness for another instance ,
simp ly because the two programs may be working with entirel y different data t ypes,
functions and predicates. The fact that two programs share the same control structure has
almost no verification significance.

We suggest that programs be classif ied according to the kinds of veri f icat ion conditions
they generate. Since the verif ication condit ions depend on both the program and the
inductive assertions , we classif y not programs per se , but annotated programs , complete
with pre- and post-c ondition and loop invariant assertions. For examp le , if a program uses
only type integer with +, -, —, and < and if all of its inductive assert ions use only +~ 

-, m and
< as well, then all of the verif ication conditions will be well-formed formulas of Presburger
arithmetic. Since the theory of Presburger arithmetic is well-known to be decidable , the
weak correctness pr oblem for the entire class of “Presburger arithmetic programs ” is
decIdable .

The advantage of this classification is that most of the variants of programs which
imp lement the same or the similar algorithms can be in one class. The assertions of the
programs which imp lement the similar algorithm are very similar . Thus, one can use the
same proof procedure for all the programs whi ch implement the similar algorithms.

Unfortunately not much work has been done exp loring the decision problems for weak
correctness of classes of programs defined this way. When all of the verif ication conditions

— 
for a class of (annotated) programs fall in a decidable theory, we say tha t the class is
ver l f icat .~pj~ decidable. What we will exp lore here is the veri f icat ion decidability of certain
classes of pr ograms which use arrays. We nvesti gate the theory of a rrays of integers with
operations restricted to addition and subtraction and call this Presburger array theory. The
first resul t of this paper is in section 3: the validity problem for unquantified well-formed
formulas of Presburger array theory is decidable. We conclude from this that the weak
correctness problem for programs using integers and arrays of integers and having
unquantified asse rti ons is decidable. We also show that since we can encode multi plication
by using addition and one dimensional arrays , the theory is undecidable for quantified
formulas in general.

There are probably not many interesting array pr ograms whose inductive assertions
a t e  expressible in such a weak asser tion language . What we would like is an assert ion
language powerful enough to express interesting assert ions about an interesting class of

V

- ,- -~ -- ,- —.-- 
. 

— .— ,. — , . - -  . -,. . .- ,—



Page 2 Verification Decidability

programs , such as sorting programs , but for which the decision problem for the verification
conditions generated is solvable.

One way to extend the assertion language is to add new (interpreted) predicate
symbols. In section 4 we consider the addition, in a limi ted way, of a predicate PermO4N),
meaning array M is a permutation of array N. The perm predicate can be defined by a
second-order formula as follows:

Perm(M,N) & (3f) [(Yx ,y)(f (x )—f (y) ~ x — y ) A (Vz)(M[z]—N(f(z)j )].

We show in sec tion 4 that the weak correctness problem for annotated programs using the
Perm pre dicate in assertions (subject to limitations) is decidable. This result is valuable
because f or almost every known one-array sort program it is the case that the inductive
asserti ons necessary to prove that the output is a permutation of the input can be wr i t ten
easil y in the assertion language we permi t. Thus, the problem of verif ying whether or not a
candidate sorting pr ogram satisfi es the permutation condition is decidable.

2. Notations and Definitions

Presburger arithmetic is the first order theory of integers with addition and no
multi plication. The particular characterization we choose has

constan ts : 0,1
func tions symbols :
predicate symbols :

This theory is known to be decidable (Hilbert].

Presburger array theory, which we denote by LPA, is a two-sorted theory with sort
integer and sort array of integer. We use to denote the domain of integers and DA to
denote the domain of array of integers. The language consists of ,

c onstants constants of Presburger theory;
function symbols : +,- -

DA X D~ X Di -, DA, (array assi gn)

*1*) : 0A x D~ -, D1. (array access)
We used * to denote the location of the arguments
for the two functi ons involving arrays.

predicate symbols: ~~,<.

Terms of sort integer is defined as follows.
1) The constants and the variables of sort integer are

terms of sort integer.

- 
———-.

~~~~~

——-— ‘——— — . — —_%1.___ -_ -___ -.__ --_I~ . ‘A

Verif icat ion Decidability Page 3

2) If a~ and a2 are terms of sort integer ,
so are a 1+a2 and a 1-a2.

3) Ii A is a term of sort array and i is a term of
sort integer , then A [i) is a term of sort integer.

4) These are all the terms of sort integer.
Terms of sort array are defined as follows.

1) Variables of sort array are terms of sort array.
2) If A is a term of sort array, and i and e are terms of

sort integer , t hen <A ,i,e> is a term of sort array.
3) These are all t he terms of sort array.

Atomic formulas are defined as follows.
1) If a 1 and a2 are tern-es of sort integer then

(a 1—a 2) and (a 1<a 2) are atomic formulas.
2) These are all the atomic formulas.

Well-formed formulas are defined as follows.
1) Atomic formulas are well-formed formulas.
2) If A and B are well-formed formulas and x is a

variable, then (— A), (A v B), (A A B), (A ~ B),
(A s B), (Jx.A), and (Vx .A) are all well-formed
f ormulas.

3) These are all the well-formed formulas.

McCarthy [McCarth y] has introduced the notion of states and described the semantics
o f Al gol-like programs. He defined two functions, assign and content~ to c hange states and
obtain values of program variables irs the state. He defined these functions by two axioms:

Al. contents(assi gn(S,x,e),x) e
A2. contents(assi gn(S,x,e),y) — corstersts (S ,y)

where x and y are distinct variables.

Kaplan [Kaplan) has shown that these axioms are comp lete if the only well-formed formulas
permitte d are equality between terms and if no function symbols are interpreted except
assign and contents.

King [King) h~s used McCarthy’s idea to describe effects of assignments on arrays. In
his f ormalism assign(M,i,e) changes the value of the i-th element of array M to e, and
c ontents(M,i) obtains the value of the i-th element of array M. The axioms corresponding to
McCa r t h y’s axioms are:

Ax i. I~~ j ~~ contents(assign(M,i,e),j) — e
Ax 2. i#j ~ contents(ass ign(M,i,e),j) — conte nts(M,j).

In this paper we will use more popular notations <M,i,e> and M[i3 instead of assign and
contents respectively.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _-

~

,--

Page 4 Verif ication Decidability

Besides the axioms Axi and Ax2 , we use two other axioms equating the meaning of
arrays to functions.

Ax 1. Vx ,y,e,M.(x—y ~ <M,x ,e>[y].e).
Ax 2. Vx ,y,e,M(.x#y ~ <M,x ,e>[y)~M[y)).
Ax 3. Vx ,y,a,b.3M. (M[x]—y n (x#y D M[y]—b)).
Ax4 . Vx ,M,N. (M[x)=N[x] ~ k.l~N).

We will denote the above set of axioms by A. In addition we wi U use the axioms of
Presburger arithme tic augmented with equality substitution axioms for any wf fs of
Presburger array theory. We denote this set by P.

~~sion Procedure for

Presburger Array Theory

In this section we present an algorithm for deciding the truth or fa lsity of unquantified
formulas of Presburger array theory, LPA.

The algorithm is as follows.

Step 1

Fr om the definition of well-formed formulas there is at least one occurre nce of a term
of the form <M,x,e>[y] if there is at least one occurrence of the array assi gnment
functi on <M,x ,e> . We eliminate this occurrence of the array assignment by the
following procedure. Let us denote the formula by R((M,x ,e>[y)), where <M,x ,e>[y)
indicates the occurrence in questi on. We transform this formula to

[x—y ~ R(e)) A (x~ y R(M[y])] .

Note that this is still a formula of 1PA~
It has one fewer occurrences of the assi gnment

func tion than the original f ormula. We repeat step 1 until there are no more
occurrences of the assi gnment functi on.

Step 2 and Step 3 are repeated for each different array.

Ste .p2

- —
.

____________________ -

Verif ication Decidabilit y Page 5

If the formula is of the form R(M[x 0)) where x0 does not contain any occurrence of
contents function , we create a new variable a0 and replace the form ula by

D R(a 0). If there are stil l occ urrences of the contents function in R(a0) then
we apply this transf ormatI on again to R(a 0) and iterate. Finally we get a formula of
the form

M[x0]~a0 ~ (k.1[x1]~a1 ~
(...(M[xn)=an D

where R(a0,...,a~) does not contain any occurrence of the contents function. This
formula IS equivalent to

(M[x0)—a 0 A ... A M[x n)=an)
~

R(a O,...,an).

Step 3

There are no nested occurrence s of the contents funct ion in the formula obtained af ter
step 2. We convert the antecedent part (M[x0]=a0 A ... A M[x n]=an) to the formula
Q(n) defined below.

Q(O) s True.

Q(j +1) • 0(j) A [(x 1~ x~+1 ~
a~ —a~4~) A ... A (x~~x~+~ D a~=a~+1)). (j�O)

Thus , we obtain

Q(n)
~
R(aO,...,an).

Since there is no assignment or contents fu nct i on and th is fo rm ula is a formula of
Presburger arithmetic we can decide the validity.

- end of procedure.

It is obvious that this procedure termInates. In each iteration of step 1 we eliminate
one occurrence of <M,x,e>, and ~n each iterati on of step 2 we elimin ate one occurrence of
M[x) Step 3 terminates because the definition of Q(n) is primitive recursive. What we will
pr ove is that the procedure transforms the formula to an “equivalent ” formula.

Theorem

This decision procedure transforms a formula R to an “equivalent” formula R’ in the
sense that P , A - R if f P , A

~
— R’.

— -

~~~~~~~~~~~~~~~ 
. . . -

~~~~~~~~._


Page 6 Verification Decidability

Proof

1. Transformat ion by step 1) is correct:

The following is an obv ious consequence of Axi , Ax2 , and equality substitution.
P , A

~
— R(<fvi,x ,e>(y]) (x~ y ~ R(e)) A (x~ y D P(M~y])).

2. Tr a nsfor mat ion by step 2) is correct :

We prove that for any formula R
P , A

~
— R(M[x]) (Va.a=M[x) R(a)).

by the following chain of reasoning,
(Ya.a— M[x) D P(a)) ~ (Ya.a=M[x) ~ R(M[x))) (Ja.a=M[x]) ~ R(M[x)) R(M[xJ).

3. Trans f ormation by step 3) is correct.

We will prove
P , A I — (M[x0]=a0 A ... A M[x n]=an)

~
R(a

~
,...,an) (f P , A

~
— Q(n) D

Since there is no fre e occurrence of M in
P , A I - (M[x 0]—a0 A ..~ A M[x n] a n) ~

i f

P , A
~

— (JM.(M[x0]=a0 A ... A M[x n j=a n)) R(a0,...,a~).
We now reduce the problem to showing

P , A
~

— (JM.(M[x 0)=a0 A ... A M[x~ J=a~)) iff P , A
~

— Q(n),
which we prove by induction on n.

1) If n—0 the left hand side is
JM.M [x0)-a0.

From Ax3 P , A j— JM.M[x0)~ a0. Since P , A
~

— Q(0), the proposition is true for n—O.

2) Assume the proposition is true for n=j,
that is P , A

~
— 3M.(M[x0)—a 0 A ... A M[x~]=a~) iff P A

~
0(j) .

To pr ove the proposition in the forward direction (or n—j+ 1
we assume (JM(M[x 0]—a 0 A A M[x~+1]~ a 1+1), which is equivalent to

3M.[(M[x 0]= a 0 A ... A M[x~)~ a~) A

For a new array constant
(M0[x 0J—a0 A ,, . A M0[x~].a~) A

—
~~~ is true from the assumption.

Using the inductive hypothesis we can deduce
0(1).

Also by equalit y substitution
x i=x j+ l ~By equalit y substitution

~ a 1 —a 1~ 1 f or any i (l~ i~ j ).
Thus, A [x , x~~1 D

t ISi~ j
So we can deduce Q(j +l).

* _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

2~1 _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _ _



Ver i f icat ion Decidab i lit y Page 7

Conversel y, to prove the proposit ion for n=j+ l  in the reverse d irect ion ,
assume Q(j+ l)  that 5 Q(j )  A ( A [x 1~ x~+1 ~ a~~a~~1 ~

) is t rue.
l~~I < J

By inductive hypothesis 3M. A tvl[x 1 ]=a 1 is true.
I�i~ j

That is , for a new constant M~, A (M 0[x i)=a i ).
lS I�j

By Ax3 , for new const ants M1 , .. ,
A (x it~

x
~+i ~

A (x~~x~+~ ~

If x j =x~+1 then a i=a~+i and thus M0[x 1)=M 1[x~+1 ] or

M0[xj ]=M 1[x 1J. Using Ax 4 Mo~
Mi or

Repeating t h e  above step f or i — I  to j, A (x i~
x .  ~1 SI~~J

On the other hand if x 1#x 14 1 A ... A x
~

�x
~+l then M0 M1 A A

Or X 1~~ x 14 1  A ~.. A x~ é x~~1 ~

Thus,
So 3M. A (M[x ,]~ a~

).
1~ i~ j+ 1

QED

We have shown that unquantified Presburger array formulas are decidable. However ,
we cannot in general decide the validity of quantif ied Presburger array formulas. The
reason is that we can encode square functi on by an array as fol lows:

M[O]—O A Vi.i�O ~ M[i# 1)—M[i)+i+i+1.

Then the multip lication can be performed as ~ [a+bJ-M[a]-M[b]. With multi pl ication
along with addition we can encode any recursive fu nctions , and the validit y problem in this
theory becomes unsolvable.

The implication of the verif ication decidabi lity results is that if the onl y function
symbols the program uses on integer sort expressions are addition and subtraction , and the
ass ert ions are wr i t ten  by Presburge~ array language , then the correctness is decidable.

This is not itself a very strong result. To be able to decide correctness of more
interesting programs like sorting programs we have to find finer subclasses of Presburger
array theory than is possible by classif ying according to prenex normal form quantifier
prefixes.

One way is to follow what the peop le have been doing irs prac tice [Suzuki). We



Pace 8 Veri f icat ion Decidabi lit y

introduce new predicate symbols to denote certa in well-formed formulas and obtain the
decision procedure for the limited formulas. The next section deals with such an examp le.

4. Decision Procedure for Permutation

In this section we consider the problem of deciding whether or not a desi gnated array
in some program has a final value which is a permutation of its initial value. Thus, we want
a procedure which can prove (or disprove) results of the following form:

P A Perm(M,M0) { program (M) ) Perm(M,M0) .

The var iable M is assumed to be the array in question , and M0 is its initial value. The
atom ic formula Perm(M,M0) means that the array Nit is a permut ation of the array M0. The
symbol P stands fo r other preconditions which do not use the Perm predicate.

More precisel y, we consider the class of all programs which use the data sorts integer
arid ar ray-of ~ integer . For the integers we all ow operations + and - , and predicates — and <.

Multip l ication and division are excluded , as before , so we cars work in the decidable theory
of Pre~burger arithmet ic. For our pur poses it w~hl he su~ icient to consider arrays which
are inf in i te in both directions. The comp licat i ons which are introduced by arrays wi th upper
and lower bounds are unnecessary fo r the simp le sorting programs which are our targets.
The array contents and assign functions are , of course , permitted for arrays , but the array
equa lity predicate is not.

We require inductive assertions to be of the form

P A Perm(M,M0)

where either conjunct may be absent. Nil may be any array expression , bu t  M0 ni~j st be a
- simp le variable which does not appear anywhere in the program (thoug h it may appear in

the Perm conjunct of other assertions.) P may be any unquantified Presburger array
• formula over the sorts integer and array-of- integer , but ii may not contain any occurrence

of the Perm predicate. We call this assertion language LPA wit h Perm.

For programs and inductive assertions of the kind we have described the verif icat ion
conditions all have the form

( 1) P1 A Perm(M,M0) D P2 A Perm(M,M0)

where P1 and P2 are Presburger array formulas , M is an array expression , and M0 is an
array variable which does not appear in M, P1, or P2. Most of the remainder of this section
is devoted to a decision procedure for formulas of the form (1). Throughout this algorithm



Veri f ica tion Decidabilit y Page 9

we rel y heavil y on the result of the previous section that unquantified formulas in the
language of Presburger array theory, LPA, are decidable.

Before we give the decision procedure , however , we should note th.A the theory we
arc developing is app licable lu almost all known one-array sorting programs. In each case
they confine themselves to the Presburger arithmetic subtheory of the integers.
Furthermore , they satisf y the assertion language restrict ions we made since loop invariants
suff ic ient l y strong to prove the permutation-preserving property of the program can be
v.ri t ten  very naturall y in the assertion language LPA w ith Perm. In f act , they usuall y can be
wr i t t en as sing le Perm atomi c formula without the need f or the optional Presburger array
formula conjunct that we allow. In that sense the result we present is stronger than
needed for our target sort programs.

We now proceed with the decision procedure for formulas of the form (1).

Step 1:

Formula (1) can be broken into two smaller formulas , namely

( 2) P1 A PermOvl,M0) ~ P2

and

(3) p
1 A Perm(kl,M0) D Perm(N,M0) .

Clearl y formula ( 1) is TRUE if and only if formulas (2) and (3) are both TRUE.

We can dispose of (2) easil y by noting that since M0 does not occu r in P1 or P2, the
P rm(M,M0) conjunct of the hypothesis is irrelevant and can be eliminated. Formula (2) i~true if and only if

is true. Since (4) is in LPA, its truth is decidable. The proof that (2) is equivalent to (4 ) is
quite short.

P1 A Perm(M,M0) ~ P2 Assumption

A Perm(M,M0) ~ P2) I V-ger i

P1 A 3M0.(Perm(M,M0)) ~ P2 M0 does not occur free in P1 or P2

F’1 ~ ‘2 I 3M0.(Perm(M,M0))~TRU E

Each step in the above transformation is reversible , so (2) is true if and only if (4) is true.

If (4) is false we terminat e the decision procedure negativel y. If not , we continue to
t ry  to pr ove formula (3).



Page 10 Verification Decidabilit y

Step 2:

Because Perm is an equivalence relation , formula (3) is equivalen t to

(5) P1 A Perm(M,M0) ~ Perm(M,N)

Once again , because M0 does not occur free in F’1, M, or N, we can demonstrate , by a
proof nearl y ident ical to the one in step 1, that the second conjunct of (5) is irrelevant and
(5) is true if and only if

(5) P1 ~ Perm(M,N)

is true.

In (6) both M and N are terms of array sort , i.e.

M — <...<V M,i,e) ...> and

N =

Thus , both Nil and N represent infinite arrays to which at most finite number of changes
(assign operations) have been made. Since P1 is unquantified , it can only constrain the
values of a finite number of the elements of M and N. Consequentl y, the only way that (6)
can he true for all assignments of the variables -- irs particular for all assignments of VM
and V N -- is for V M and VN to be the same variable.

Thus, i f  V M is not the same variable as VN, terminate negativel y.

Ex planat ion about Step 3:

We now come to the heart of the decision procedure. By step 2 we can rewr i te  (6) as

(7) P1 ~ Perm(<...<V,i ,e>...>,<...<V,j,f> ...>)

Formula (7) says that array V, after a certain finite sequence of assi gn operations , is a
permutation of the same (infinite) array V after a different finite sequence of assign

..~~ , operations. Each assi gn operation can be viewed as the removal of one element from the
array V and the insertion of another. We come, then , to the fundamental idea of our
decision procedure: if we let be the multiset of elements inserted into the first array by
assignments , and DM be the multiset of elements deleted I ~m it by assi gnments , and if we
let 1N and DN be defined similarl y for the second term , the (7) holds if and only if

(8)  1M °N 1N~~
0M

is TRUE as a multiset equation with the assumption P1. (The + stands for multiset union.)
More precisel y, since ‘M’ 1N’ °M’ and are multisets of terms , we mus t show that (8) is
true f or all assi gnments of the variables for which P1 is TRUE, i.e.



Verif ication Decidability Page 11

V (9)  P1~~~
IM + D N~~~

IN 4 D M.

At t his point we are in a positi on to conclude that formulas of the form of (1) are decidable.
We have reduced it to the problem of deciding the truth of form ulas of the form (9). Since
irs (9) the multisets in the consequence are finit e and exphicite l y listed , we can express the
equation as a finite set of disjuncts of conjuncts. For examp le, the follo wing formula in the
form of (9)

P ~ {a ,b,c } — {d,e,f )

can be expressed less tersel y as

P ~ (a—c t A b—c A c”f ) V

(a—c A b—d A c—f )  v

(a—f A b—c A c d )

with  six disj uncts. In general , there will be nI disjuncts if the mult isets contain n
expressions each. The resulting formula is in LPA, and therefore decidable. But using the
decisi on procedure for LPA directl y in this way would be intolerabl y slow in most cases , and
therefore we propose a more practical continuation of the decision procedure in step 3.

Step 3:

We begin by computing 1M’ 1N’ DM, and 0N using the following

symbolic algori thm.

beg in
multiset of integer expression : ‘M’ 1N’ 0M’ DN;
array expressi on : Nil, N, MM, NN, X;
integer expressi on i,e;

1Ni1 4- ‘N 4- DM ‘- DN 4-

MM~~~k1;NN .-N;

do
MM <X ,i,e> -. 0M °M + {X[ i)} ; 1M 4- 1M + (e ;  MM X II
NN — <X ,i,e’ -. DN ’- DN 4 {X(I)}; IN 4 - IN + ~e); NN i- X

oct
end

The firs t four lines of th~ al gorithm are declarations indicating the types of
expressions the variables may take as values. The do -- od construct is Dijkstra ’s

I



Page 1 2 Verification Decidabilit y

nondeterm inistic repetit ive guarded comma nd constr uct [Dijkstra]. The sign is a pattern
match operator which can be read “is of the form ”. It returns true or false according to
whether or not the match succeeds , and has the side-effect of binding the variables in the
rig ht-hand argument whenever the match succeeds.

Having computed 1M’ ‘N’ 0M and DN, we need to pr ove (9). We can do this if we have
an al gorithm f or proving

(10) P~~~S 1 — S 2

where P is a Presburger array formula and S 1 and S2 are multise ts of integer expressions.
W~ propose to find pairs of elements e 1 ‘ S 1 and e2 ( 

~2 such t h a t

P D e 1 — e2

Whenever we find such a pair of equal expressions we remove them from the multisets
and continue with the smaller multisets , attempting t o show

PD S 1 - {e 1} = 

~2 - {e 2}

The following iteration will remove pairs of equal elements from S 1 and S2:

do
x~~ S 1 A y E S2 A [ P D x ~ y ] - ~~5 1 .-S 1- ~ x); S2 ’-S 2 - { y }

od

Once again we have used Dijkstra ’s it erative guarded command construct. The guard is
intended to be a rather elaborate pattern match operation which means “find x ( S 1 and y (
S2 such that ‘P ~ x— y ’ is t rue ”. If the pattern match succeeds , the variables x and y are
bound to the matching elements , the ac tion to the right of the arrow is executed , and the
i ter - ~ ion continues. If the pattern match fails , the iteration terminates.

It m i ght seem that writin g the loop the way we did makes the algorithm obscure. We
— i 

could as well have written the following doubly nested loop.

for all x ( S1 do
for all y ( S2 do

if [P D x— y]
then

( S 1 +- S 1 — ( x ) ;
2 2

However , we fel t that the explicit double loop structurc precludes opportunities for
optimizat ion which could be important in an actual implementation.

If th is iteratio-n succeeds in reducing S1 and S2 to empty , then formula (10), and hence

;,

• .. ‘

J.. ~~~~~~~ 
.• . . —- .-.- . —.-



Veri f icat i on Decidabilit y Page 13

f ormula (1), are TRUE, and the decision procedure terminates. However , if S 1 and S2 are
not reduced t o empt y, it is not necessaril y the case that ( 10) is FALSE, as we explain in the
next step.

Step 4:

Once all such pairs of elements which are equal as a consequence of P have been
removed, the remaining multisets sti l l  may or may not be equal. It may happen that under
one assi gnment of values to the prog ram varia bles the muttiset elements are pairwise equal
according to one correspondence , and under another assi gnment the elements are pairwise
equal under a different correspondence. There might be no tw o elements which are
pairable under all assi gnments. Probably the simp lest examp le o f th i s  phenomenon is the
following:

TRUE D (V[i).<V,i,1>[j] } — {V{j] ,<V ,j,1>[i]}

In 
~~

y assignment in which i=j holds, the multisets are equal because their f i rst
elements are equal and their second elements are equal. And in any assi gnment in which i~ j
holds, the multisets are also equal, but the elements are paired according to the other
correspondence. Thus, the mult isets are equal under all assi gnments , but there is no pair of
elements which are equal under all assignments.

In order to decide the truth of

(11) P D 9 1 — $ 2

we rewri te the formula as

(12) P D { m l j i ~~~k } ~~~{ n , Ii~~ k }

Formula (1 2) is equivalent to

(13) P A  ( m 1—n 1 v m 1-n2 v ... v m l-nk v (m 1~ n1 A m 1~~n2 A ... A ml~~
fl k ))

Formula ( 13) can be broken up into smaller formulas such that (13) is true if and
only if all of the following k+1 formulas are true.

( 14) P A m l_nl D { m i I i~~~
k ) _

~~ nl I i~~ k)

P A m l~
nk D ( m l I i ~~

k ) _ { n I j i � k )

Each of the formulas of (14) can in turn he further simplified as
fol lows:

( 15) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

i f

rr 
.-. - - .——,- -v- _ • -.  —.—-~- — .. — - - - .



Page 14 Verification Decidabi hity

P A m i~ nk D { m j I 2 ~~ i < k } _ { n . l j < f c A j # k }

(15*) P A ( m l#nl A m l#n2 A ... A m l,~nk) D F A L SE

We abbreviate ( 15*) as

(16*) P D (m 1 ( S~)

In (15) all of the multisets are smaller by one than those in (11). This fact forms the
basis of a recursive procedure for proving (Or disproving) formula (11). We define a
recursive procedure TESTEQUAL(P,S 1,S2) which returns TRUE or FALSE according to the
truth of (12). The multisets S 1 and S2 mus t have the same number of expression s in them.
T ESTEQUAL works in four steps.

( i )  If S j —S 2—~}, the procedure returns TRUE immediatel y.

( i i )  As an optimization the procedure then checks tha t P is satisfiable. If P is unsatisfiable ,
T ESTEQUAL returns TRUE immediately.

( i i i )  Choose an element m1 from S 1 and break ( 11) into the first k-cases of (15). Call
T ESTEQUAL recursivel y to test them. The recursive calls must all return true, or
TEST EQUAL returns false.

(iv) Test (16*) and return its truth value.

Here is the body of the procedure in an Algol-like syntax.

Boolean procedure TESTEQUAL(P,S 1,52);
begin

f ormula: P,R;
multiset of integer expressions: S 1,S2;
integer expressi ons: x ,y;

Comment : S 1 and S2 must have equal cardinalit y;
• if 19 11i’1S21 t hen abort;

Comment: Null multisets are always equal;
if 

~
i— { }  then return TRUE;

Comment: Check that P is satisfiable;
if [-F’) then return TRUE;

Comment: Check all cases of (15) excep t (15*);
x choice(S 1);
for all y ( S2 do

if not TESTEQUAL(P A x— y , S 1 - ~x) , S2 - {y) ) then return FALSE;

- 
..-- 

- -~~~~~~~~~~~~ - -~~~~~~~~~~ --~~- - - - .



Veri f icat ion Decidability Page 15

Comment: Return the result of (16*) ;
return [P D (x ( S2 )J

end.

A gain we use [P)-notation as a Boolears expression meaning “P is true ”. Of course we
only use this n o t a t i o n  when P is a formula in a theory known to be decidable. The choice
funct ion merel y returns some (random) element of its multiset argument. We have been
rather  loose wi th some of the syntax in this program , but we trust that the reader will be
able to supol y the missing interpretat ions from the discussion above.

A few additional remarks should be made about the decision procedure we have
described above. Our experience indicates that for the kinds of pr ograms peop le actuall y
wr i te , step 4 of our decision procedure is unnecessary; if the ver i f ica tion condition is in fact
a th=orem , this is established by step 3. Therefore , if this decision procedure is embedded
in a real ver if ier , it might be wise to issue a warning message to the user before (Or instead
of )  proceeding to step 4, since the worst case complexit y of the TESTEQUAL is at least n! irs
the si ze of the multiset arguments.

We have only treated the case that the values of the array elements are int~ ger.
However , the pr ocedure cars be adapted for arrays of reals if the allowed operations on
reals are within Tarstc ian ar ithmetic [Tars ici] . As a ma tter of fact , the decision pr ocedure
can be adapted for any data t ype in which the equalit y among terms is decidable.

We observe the procedure for reals. The formula we are going to deal with has the
for r~i

P n Perm( A,A0) D Perm(B,A0)

where A and B are terms of sort array of reals and P is an unquaritified wel l- formed
formula of the two-sorted theory of integers and reals. The restriction here is that we do
not allow any mixed sort te rms or atomic for m ulas , so that you cannot equate or add terms
of integer and real. Because of this restriction one cannot use a real term to be the index
into an array .

The procedure described irs this sec tion can be carried out without modification , excep t
where we have to test the truth of particular unquant ified formulas. In such cases we can
appl y the procedure of the previous section to eliminate arrays. Then we can t ransform
the f ormula to conjunctive normal form. All of the conjuncts have to be valid. Each

orsju nc t consis ts of disjunction of atomic formulas and we can split these atomic formulas
int o two classes , one for integer and the other for real. The validity of both disjursctioris
are independent , and we can use the separate decision procedures f or integer and real .
Thus , we can decide the permutati on propert y of arrays of real with the same basic
al goritl~m.

- — ~~~~~~
—.---



Page 16 Verification Decidabihity

Examp le

The following is an insertion sort program. We can show tha t the fina l array is t h e
permutation of the initial array by the decision procedures given in this paper.

The annotated program is

assert Perm(A ,A0);
J~ 2;
invari ant Perm(A ,A0)
while J�N do

begin
KEY~ A[J];
I~ J— 1;

up: assert Perm(<A ,I+1,KEY>,A0);
if A [I)�KEY then goto exit;
A[I+1 ]4—A[I);
I~-I-1;
if 1�1 then goto up;

exit: A[I+1]~ t<EY;

end;
assert Perrrs( A,A0);

Since this program conforms to the restrictions of the Presburger array programs with
Perm(A,A0, assertions, its correctness is decidable.

The verification conditions are

1) Perm(A ,A0) D Perm(A ,A0)

2) Perm(A ,A0) A J~N D Perm(<A ,J,A[J)’,A0)

3) Per m(A,A0) A - J~N~~ Perm( A,A0)

4) A[fl~KEY A Perm(<A ,I+1,K EY> ,A0) ~ Perm(<A ,I+1,K EY>,A0)

5) 1~~-1 A -.A(I)~KEY A Perm(<A ,I+1,X EY>,A0) ~ Perm(<<A,I+1,A(I)>,I,KEY>,A0)

6) A[I)~KEY A Perm(<A ,I.1,K EY> ,A0) D Perm(cA ,I+1,KEY>,A0)

7) -ls I-1 A —A [1 3~KEY A Perm (~A,I+1 ,KEY>,A0) ~ Perm(~<A ,I41 ,A[I)>,l ,KEY>,A0).

The non-trivial verification conditions are 5) and 7), which are very similar. Let us
examine 5).

VC 5: IsI-1 A -A[I]sKEY A Perm( A,l+1,K EY> ,A0) ~ Perm(~<A ,I+1 ,A[I)’,l,K EY> ,A0)



Verif ication Decidabihit y Page 17

Step ! Transform to
1~~1-1 A —A( I)s KEY D Perm(<A ,I+ 1 ,KEY>,<<A ,I+ 1 ,A[ I]> ,1,KEY>)

Step 2 The base array vari ables of the two array terms are the same; proceed.

S’ ep 3
— {KEY)

— ~A[I~ 1J)
‘N {A[I) , KEY)

— ~A[I+1] , <A ,I+1 ,A[l)>[I)}.

Tra nsform to P D IM+DN— I N+DM f orm , i.e.

1 s I— i A — A[ I] s K EY  D {K EY , A[I+1] , <A ,I~’ 1 ,A[I]>[I]~—{A [I] , KEY , A[I+ 1 ] } .

By inspection we can see that the two mult isets would be reduced to empty by Step 3,
because

1st- I A -A [I]sKEY D KEY— KEY
1s t - i  A -‘A[I)sKEY D A[I+ 1]—A [I+1)
1st— i A —A [I]sKEY D <A ,I+i ,A[I]>[t]—A[I]

Step 4 Unnecessary, because step 3 reduced the multisets to null.

5. Conclusion

Unlike the decidabi lity results for pr ogram schemata , veri f icat ion decidability is not
influenced by the control structure of programs. That is, the decidability results are not
sensitive t o individual programming st y le or to variations in algorithms for the same task.

Our permutation decidabilit y results can be app lied t o almost all of the sorting
programs people usually write. We therefore feel that the methods developed in this paper
shows the value of having domain specific , specially interpreted predicates such as Perm in
the assertion language. Had we not used the Perm predicate as we did, we might have had
to wri te a second-order f ormula to express the same thing, such as the foll owing:

Perm(Nil,N) — (3F)(VxXY y) [ F(x ) — F(y) ~ x — y A M[x] — N[F(x)) ]

I’ seems very unlikel y tha t verification conditions allowing this kind of quantification over
functions will be decidable.

The next target of our research will he the orderedness properties of Presburger



Page 18 V erif icat ion Decidabiiity

arrays. Eventuall y we hope t o find a single assert ion language in which the inductive
assertions for both the orderedness and permutat ion properties of ordinary sort programs
can be expressed , and for which we can find an al gorithm to decide the resulting
ver i f icat ion conditi ons.

There are various other directions that future research in this area mig ht take. For
each al gorithm domain we should try to establish assertion vocabularies for which the
resulting ver i f icat ion conditions are decidable. When decision procedures are discovered,
they should be formulated in such a way that they can provide useful debugg ing information
when a proof fails. And, of course , a long range goal is to build a verifier which can
recognize programs of the decidable domains , and verif y them without human aid.

Bibliography

[Dij kst ra ] Dijkstra , E.W., A Discip l i n e  of P r o g r a m m i n ,~~ Prentice-Hal l , 1976.

[Hilbert) Hilbert , 0. and Bernays , P., Grundlagen der Mathematik I,
Springer-Verlag, 1968.

[l<aplan] Kaplan, D., Some Comp leteness Results in the Mathemati cal
The ory of Computation , JACM, Vol .15, No.1, pp. 124-134 , 1968.

[King] King, .1. C., A Program Verif ier , Ph.D. thesis , Carneg ie-Mellon
Universi ty, 1969.

[Knuth) Knuth, D.E., The Art of Computer Programmi~g, Vol .2, Addison-Wesley.

[McCarth y ) McCarthy, J., Towards a Mathematical Science of Computation,
Pr oc. of IFIP Congress 62, pp.21-28, North-Holland Publishing
Company, Amsterdam , 196 2.

[Suzuki) Suzuki, N., Verif y ing Programs by Al gebraic and Log ical
Reduction, Pr oc. Intl. Conf. on Reliable Sot tw~~~ Si gp lan Notices ,
Vol.10, No.6, June, 1975.

(Tarski ] Tars lci, A., A Decision Method for Elementary Al gebra and Geometr~y,
RAND Corporation , Santa Monica , Ca., 1948.


